人工智慧的發展就是要讓電腦具備獨立思考的能力,而強化式學習(ReinforcementLearning)就是訓練AI如何決策的一套方法,是最具產業發展潛力的熱門技術,可以有效解決生活中許多難以突破的問題,包括產業自動化、自動駕駛、電玩競技遊戲以及機器人等。
Deepmind將強化式學習應用於開發圍棋AI上,打造出AlphaGo,並連續擊敗李世乭、柯潔等世界第一流的圍棋高手,這段情節想必你並不陌生。而接續發展出來的AlphaZero不僅實力更強大,而且不侷限於單一棋類,可以從零開始訓練、不需要人類棋譜,被視為是AGI通用式人工智慧,震撼了整個AI產業界。
以強化式學習為主幹的AlphaZero雖然備受矚目,但對於多數讀者而言,要讀懂AlphaZero的論文並不容易,而且論文中並未公開程式碼,紙上談兵就要了解相關細節實在難如登天,本書將透過實作帶您揭開AlphaZero神秘的面紗。不用棋譜(訓練資料)怎麼進行訓練?強化式學習在AlphaZero扮演甚麼角色?為甚麼一套演算法可以適用不同規則的棋類或遊戲?論文沒有講清楚的都在這裡!
在這本書中,你將學到:
●從深度學習開始,打下紮實基礎,包括ArtificialNeuralNetwork、CNN、ResNet。
●各類強化式學習演算法的精髓,包括:ϵ-Greedy、UCB1、PolicyGradient、Q-Learning、SARSA、DeepQ-Network(DQN)。
●理解人工智慧中做出最優決策的方法-賽局樹演算法,包括MinimaxAlgorithm、Alpha-betaPruning、MonteCarlomethod、MonteCarlotreesearch。
●用Python實作AGI通用演算法-AlphaZero,只需修改規則就能稱霸井字遊戲、四子棋、黑白棋、動物棋等不同遊戲。
本書特色:
強化式學習有多強,用Python實作見真章!
AlphaZero結合了深度學習、強化式學習和賽局樹演算法,背後涉及了許多相關技術,網路上雖然可以找到不少討論或教學文章,但內容多半只是原始論文的隻字片段,實作細節也交代不清楚,對於有心了解AlphaZero核心技術的讀者來說幫助很有限,往往只是越看越模糊,也不知道誰說得對。
本書以大量圖說、實例詳細說明AlphaZero各種相關的演算法,在實作的過程中,你可以親自與AI互動,實際體驗AI從零開始逐漸累積實力的過程,確實了解強化式學習跳脫人類思維所做的每一步決策,釐清演算法的每一個細節。全書內容經過施威銘研究室監修,只要遇到比較複雜的演算法或程式邏輯,小編都會額外補充,講不清楚就加上圖解,再不清楚就手算一遍,一頁一頁秀給你看,保證一定讓你看得懂、做得到。
●以大量圖說、實例、示意圖帶你高效學習書中的演算法,程式碼都有詳細的註解說明
●深度學習、強化式學習、賽局樹等各種相關演算法逐一解析、詳細說明
●活用Google免費的Colab雲端開發環境,並提供線上更新操作手冊,包括連線時間限制的處理以及GPU/TPU的使用說明
●從AlphaGo、AlphaGoZero到AlphaZero,原始演算法和模型架構剖析
●一步一步解說如何將遊戲規則轉換為程式邏輯,學習賽局資料的預處理程序
●提供預訓練好的現成模型,立即套用、馬上對戰,幫你節省動輒20小時以上的訓練時間
訓練 GOOGLE 論文 深度學習 學習 演算法 PYTHON 遊戲 AI 圍棋 產業